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AND A WEAK MAGNETIC FIELD (μ_± H<<C) 
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Abstract. It is theoretically shown for the first time that in an external electric and weak magnetic fields, 

when there is a temperature gradient, an impurity semiconductor radiates energy from itself with a certain 

frequency. The values of the frequency of current oscillations and the limit of change of the external 

electric field are found. It is shown that the resistance in the medium has only ohmic character. It is stated 

that in the above semiconductor, when the concentration of electrons and holes are determined from the 

obtained expression in theory, the injection of contacts plays a major role for the appearance of the 

indicated current oscillation in the circuit. 
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1. Introduction   

 

In conducting media under the influence of an external electric field, charge carriers 

receive additional energy of the order of 𝑒𝐸𝑙 from the electric field (e is the elementary 

charge, E is the electric field strength, l is the mean free path of charge carriers). In this 

case, charge carriers have an energy of the order of 
3

2
𝑘0𝑇 +  𝑒𝐸𝑙 (𝑘0− is the Boltzmann 

constant, T is the lattice temperature) and the redistribution of charge carriers over the 

medium occurs in an uneven manner. This redistribution of charge propagates as a wave 

inside the medium. These waves can be unstable and therefore energy radiation begins 

from the crystal. The mechanism and cause of the appearance of unstable waves in 

different conducting media are different. Therefore, the theoretical study of unstable 

states requires different mathematical approaches. If the excited wave inside the medium 

does not go outside (ie, there is no current oscillation in the external medium), then the 

frequency of this wave is a complex value and the wave vector is a real value. In the 

opposite case (ie, frequency ω=ω0, wave vector 𝑘 = 𝑘0 + 𝑖𝑘′), current fluctuations occur 

in the external circuit and the medium radiates energy with frequency ω0. 
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In Hasanov et al. (2011, 2013), Hasanov and Hasanova (2018), Demirel et al. 

(2012), Guseynov (2024), Aliev and Hasanov (2018), Ibragimov et al. (2024), we 

theoretically studied various instabilities in semiconductor media and obtained some 

analytical formulas for an external electric field and for the current oscillation frequency. 

However, in impurity semiconductors, the excitation of unstable waves depends on many 

factors due to the presence of various impurity centers in the medium. Impurity centers, 

depending on the charge states, are capable of capturing (recombination) or emitting 

(generation) charge carriers. These recombination and generation processes can excite 

unstable waves inside the medium. 

Gold atoms in germanium, in addition to the neutral state, can be singly, doubly and 

triply negatively charged centers. These impurity levels are located at different distances 

from the conduction band of the semiconductor. Depending on the temperature of the 

semiconductor, these energy levels are more or less active levels. In the experimental 

work (Iglitsyn, 1966), singly and doubly negative levels were active. In what follows, we 

will use the experimental model (Iglitsyn, 1966). It is clear that there is a Coulomb barrier 

around the negative charge. Electrons that have received energy from an external electric 

field can overcome this Coulomb barrier and be captured. As a result of thermal transfer, 

electrons can escape from the impurity center into the conduction bands. Due to the 

capture of electrons by impurity centers from the valence band, the number of holes 

increases. As a result of recombination and generation of electrons and holes, the 

electrical conductivity of the semiconductor changes. In Hasanov et al. (2011, 2013), 

Hasanov and Khalilova (2013), Hasanov and Hasanova (2018), Jabarov (2023), Demirel 

et al. (2012), Aliyev and Hasanov (2018) analyzes of kinetic equations in a semiconductor 

with singly and doubly negatively charged centers are presented in detail. These papers 

present the results of a theoretical study of internal and external instability. However, the 

equilibrium values of the electron and hole concentrations were arbitrary. 

In this theoretical work, we will investigate current oscillations (i.e., external 

instability) in semiconductors with singly and doubly negative impurity centers in an 

external electric field E0 - in the presence of weak magnetic fields (i.e., 𝜇±𝐻0 << 𝑐, 𝜇±- 

are the mobility of holes and electrons, c is the speed of light). Taking into account the 

injection at the contacts of the semiconductor, when the concentrations of electrons η_- 

and holes η+ -are determined from the relation 𝜂+𝜇− = 𝜂−𝜇+. In addition to the above 

conditions, the semiconductor has a constant temperature gradient ∆T=const. 

 

2. Basic equations of the problem 

 

The kinetic equations for electrons and holes in semiconductors by the above 

impurity centers have the form (Hasanov et al., 2011; 2013; Demirel et al., 2012; Hasanov 

& Hasanova, 2018; Aliyev, 2018; Hasanov & Khalilova, 2013; Iglitsyn, 1966). 

 
𝜕𝜂−

′

𝜕𝑡
+ 𝑑𝑖𝑣𝑗−

′ = 𝜈−𝜂−
′ −

𝜈−
′

𝜈−𝑖𝜔
[𝜈+𝜂+

′ + 𝜈−𝜂−
′ + (𝜈+

𝐸𝜂+𝛽+
𝛾

+𝜈−𝜂−𝛽−
𝛾)

𝑒(𝜇+𝜂+
′ +𝜇𝜂−

′ )

𝜎+𝜎1
] +

+ 𝜈−𝜂−𝛽−
𝛾 𝑒(𝜇+𝜂+

′ +𝜇𝜂−
′ )

𝜎+𝜎1
 ,    (1) 

𝜕𝜂+
′

𝜕𝑡
+ 𝑑𝑖𝑣𝑗+

′ = −𝜈+𝜂+
′ +

𝜈+
′

𝜈−𝑖𝜔
[𝜈+𝜂+

′ + 𝜈−𝜂−
′ + (𝜈+

𝐸𝜂+𝛽+
𝛾

+𝜈−𝜂−𝛽−
𝛾)

𝑒(𝜇+𝜂+
′ +𝜇𝜂−

′ )

𝜎+𝜎1
] −

−𝜈+
𝐸𝜂+𝛽+

𝛾 𝑒(𝜇+𝜂+
′ +𝜇𝜂−

′ )

𝜎+𝜎1
,    (2) 



E.O. MANSUROVA: CURRENT OSCILLATIONS IN IMPURITY SEMICONDUCTORS WITH BOTH SIGNS… 

 

 
221 

 

𝛽± = 2
𝑑 ln 𝜇±

𝑑 ln(𝐸0
2)

, 𝑣⃗± = 𝜇±𝐸⃗⃗0, 𝛽±
𝛾

= 2
𝑑 ln 𝛾±

𝑑 ln(𝐸0
2)

; 𝜂±
′ ≪ 𝜂±

0 , 𝐸′ ≪ 𝐸0, 𝑇 ≪ 𝑒𝐸0𝑙. 

 

𝑇 = 𝑘0𝑇0, 𝑇0- grating temperature, l - mean free path. 𝜈− = 𝛾−(𝐸0)𝑁0- electron capture 

frequency, 𝜈+ = 𝛾+(𝐸0)𝑁0- hole capture frequency,𝜈+
𝐸 = 𝛾+(𝐸0)𝑁0- hole emission 

frequency, 𝜂₋ =
𝜂₋⁰𝑁₀

𝑁₋⁰
, 𝜂₊ =

𝜂₊⁰𝑁₋⁰

𝑁₀
, 𝑁0 = 𝑁+𝑁− total concentration of impurities, N- 

singly negatively charged centers,  𝑁− - doubly negatively charged centers, 𝑁 >> 𝑁−, 

𝜎 = 𝜎+ + 𝜎− = 𝑒(𝜂+𝜇+ + 𝜂−𝜇−), 𝜎1 =  𝑒 (𝜂+𝜇+𝛽+ +  𝜂−𝜇−𝛽−), 𝜈 = 𝜈+
′ + 𝜈−

′ - 

combined frequencies of capture and emission of electrons and holes by no uniform traps 

(𝑁0, 𝑁−
0) >> (𝜂±

0 ). 

 

3. Results and discussion 

 

In the presence of an external magnetic field and a temperature gradient, the current 

densities for electrons and holes have the form: 
 

𝑗−⃗⃗⃗⃗ = −𝜂−𝜇−𝐸∗ − 𝜂−𝜇𝑙−[𝐸∗𝐻] − 𝛼−∇𝑇⃗⃗⃗⃗⃗⃗ − 𝛼−
′ [ ∇𝑇⃗⃗⃗⃗⃗⃗  𝐻⃗⃗⃗]

𝑗+⃗⃗⃗⃗ = 𝜂+𝜇+𝐸∗ + 𝜂+𝜇𝑙+[𝐸∗𝐻] + 𝛼+∇𝑇⃗⃗⃗⃗⃗⃗ + 𝛼+
′ [ ∇𝑇⃗⃗⃗⃗⃗⃗  𝐻⃗⃗⃗]

   (3) 

 𝐽 ⃗⃗⃗⃗ = 𝑒(𝑗+⃗⃗⃗⃗ − 𝑗−⃗⃗⃗⃗ ).     (4) 
 

Substituting (3) into (4) we find 
 

𝐸∗ =
 𝐽 ⃗⃗ ⃗⃗

𝜎
−

𝜎1

𝜎
[𝐸⃗⃗∗𝐻⃗⃗⃗] −

𝛼

𝜎
∇𝑇⃗⃗⃗⃗⃗⃗ +

𝛼1

𝜎
[ ∇𝑇⃗⃗⃗⃗⃗⃗  𝐻⃗⃗⃗],   (5) 

 

here 𝜎 = 𝜎+ + 𝜎−,  = + + −, 1 = +
′  + −

′ . 

It was proved in Gurevich (1963) that in the presence of a magnetic field and a 

temperature gradient, hydrodynamic motions of charge carriers arise and the electric field 

inside the medium has the form: 
 

𝐸∗ = 𝐸⃗⃗ +
[𝜈⃗⃗⃗ 𝐻⃗⃗⃗]

𝑒
+

𝑇

𝑒
(

∇𝜂′

𝜂0 −
∇𝜂+

′

𝜂+
0 ).    (6) 

 

First, we find 𝐸∗⃗⃗⃗⃗⃗ from the vector Equation (5) as follows. We write (5) in the 

following form 
 

𝐸∗⃗⃗⃗⃗⃗ = 𝐴 ⃗⃗⃗⃗ +
𝜎1

𝜎
[𝐻⃗⃗⃗ 𝐸∗⃗⃗⃗⃗⃗].     (7) 

 

Denote 𝐵⃗⃗ =
𝜎1

𝜎
𝐻⃗⃗⃗, them 

 

𝐸∗⃗⃗⃗⃗⃗ = 𝐴 ⃗⃗⃗⃗ + [𝐵 ⃗⃗⃗⃗  𝐸∗⃗⃗⃗⃗⃗].     (8) 
 

From the vector Equation (8) we can easily obtain: 
 

𝐸∗⃗⃗⃗⃗⃗ = 𝐴 ⃗⃗⃗⃗ + [𝐵 ⃗⃗⃗⃗  𝐴 ⃗⃗⃗⃗ ] + [𝐵 ⃗⃗⃗⃗ [𝐵 ⃗⃗⃗⃗  𝐸∗]].    (9) 
 

Expanding the vector product in (9) at 𝜇±𝐻0 ≪ 𝐶 and substituting the resulting 

expression for 𝐸∗⃗⃗⃗⃗⃗  in (6), we easily obtain the expressions for the electric field 

 

𝐸⃗⃗ = −
[𝜈⃗⃗⃗ 𝐻⃗⃗⃗]

𝑒
−

Λ′

𝜎
[ ∇𝑇⃗⃗⃗⃗⃗⃗  𝐻⃗⃗⃗] +

 𝐽 ⃗⃗ ⃗⃗

𝜎
−

𝜎1

𝜎2
[𝐽 ⃗⃗⃗ 𝐻⃗⃗⃗] + Λ∇𝑇 +

𝑇

𝑒
(

∇𝜂−
′

𝜂−
0

−
∇𝜂+

′

𝜂+
0 ).  (10) 
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Substituting (3-4), taking into account (10) in (1-2), we obtain the following 

dispersion equations for determining the wave vectors 𝑘1 and 𝑘2  

 

𝑥4 − 𝑢𝑥2 + 𝑓𝑥 − 𝛿0 + 𝑖𝛿1 = 0, 𝑥 = 𝐿𝑥𝑘.    (11) 

 

Here  𝑢 =
1

𝜑−𝜑+𝛼2; 𝜑± =
𝜇±𝐻0

𝑐
; 𝛼2 =

1

8𝜑−𝜑+
∙

𝜔

𝜈+
; 

 

𝑓 =
𝐿𝑥𝑢𝜔

𝜇−𝜇+𝐸2
2𝛼2

; 𝛿0 =
𝐿𝑥

2 (𝜈−𝜈+−𝜔2)

𝜇−𝜇+𝐸2
2𝛼2𝜑−𝜑+

; 𝛿1 =
𝐿𝑥

2 𝜔𝜈−

𝜇−𝜇+𝐸2
2𝛼2𝜑−𝜑+

; 𝐸2 =
𝑇

𝑒𝐿𝑥
 

 

The solution of Equation (11) in general form is very difficult. Therefore, we will 

investigate oscillations in the considered medium with frequencies 
 

 =  ±(𝜈−𝜈+)1/2.     (12) 
 

Taking into account (12), from (11) we easily obtain: 
 

𝑥1 = 𝑢1/2 − 𝑖
𝛿1

2𝑢3/2; 𝑥2 = −𝑢1/2 − 𝑖
𝛿1

2𝑢3/2.      (13) 

 

After finding the dimensionless wave vectors 𝑥1 and 𝑥2, we can calculate the 

impedance of the medium as follows 
 

𝑍 =
1

𝐽1
∫ 𝐸′(𝑥, 𝑡)𝑑𝑥

𝐿𝑥

0
 .    (14) 

 

Find 𝐸′(𝑥, 𝑡) from (10) 

 

𝐸𝑥
′ =

𝐽𝑥
′

𝜎0𝜑
+

𝑖𝑇

𝑒𝜑
(𝑘1 + 𝑘2) (

𝜂−
′

𝜂−
0 −

𝜂+
′

𝜂+
0 )     (15) 

𝜑 = 1 −
𝐸1

𝐸0
; 𝐸1 = Λ0𝛾∇𝑇; 𝛾 = 2

𝑑 ln Λ

𝑑 ln(𝐸2)
. 

 

𝜂−
′  and 𝜂+

′  must be found, taking into account injection, on the contacts of the 

medium as follows 

 

𝜂−
′ = с1

−𝑒𝑖𝑘1𝑥 + с2
−𝑒𝑖𝑘2𝑥, 𝜂+

′ = с1
+𝑒𝑖𝑘1𝑥 + с2

+𝑒𝑖𝑘2𝑥 .   (16) 

 

Considering that at 𝑥 = 0, 𝜂±
′ = 𝛿 ±

0  𝐽𝑥
′  and that 𝑥 = 𝐿,  𝜂±

′ = 𝛿±
𝐿  𝐽𝑥

′  (17)  

we find from (16) taking into account (17) for the constants 𝐶1,2
−  and 𝐶1,2

+  the following 

expressions 

𝐶1
− = 𝐽𝑥

′ 𝛿 −
0 𝑒𝑖𝑘2𝐿𝑥−𝛿−

𝐿

𝑒𝑖𝑘2𝐿𝑥−𝑒𝑖𝑘1𝐿𝑥
 ; 𝐶2

− = 𝐽𝑥
′ 𝛿−

𝐿 −𝛿 −
0 𝑒𝑖𝑘1𝐿𝑥

𝑒𝑖𝑘2𝐿𝑥−𝑒𝑖𝑘1𝐿𝑥
; 𝐶1

+ = 𝐽𝑥
′ 𝛿 +

0 𝑒𝑖𝑘2𝐿𝑥−𝛿+
𝐿

𝑒𝑖𝑘2𝐿𝑥−𝑒𝑖𝑘1𝐿𝑥
; 𝐶2

+ =

 𝐽𝑥
′ 𝛿+

𝐿 −𝛿 +
0 𝑒𝑖𝑘1𝐿𝑥

𝑒𝑖𝑘2𝐿𝑥−𝑒𝑖𝑘1𝐿𝑥
;                                     (18) 

or 

  𝐶1
− = 𝛿1

−𝐽𝑥
′ ; 𝐶2

− = 𝛿2
−𝐽𝑥

′ ; 𝐶1
+ = 𝛿1

+𝐽𝑥
′ ; 𝐶2

+ = 𝛿2
+𝐽𝑥

′ .   (19)  

 

Substituting (15) taking into account (18-19) we obtain the following expressions 

for the impedance of the medium 
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𝑍 =
𝑇

𝑒𝜑
(1 +

𝑘2

𝑘1
) (

𝛿1
−

𝜂−
0

−
𝛿1

+

𝜂+
0 ) (𝑒𝑖𝑘1𝐿𝑥 − 1) + 

+
𝑇

𝑒𝜑
(1 +

𝑘1

𝑘2
) (

𝛿2
−

𝜂−
0 −

𝛿2
+

𝜂+
0 ) (𝑒𝑖𝑘2𝐿𝑥 − 1) +

𝐿𝑥

𝛿0
.                               (20) 

When deriving (15), we take into account that 𝐻′ = 0, т.е. 𝑘⃗⃗ ∥ 𝐸′⃗⃗⃗⃗⃗. 

When obtaining the values of the wave vectors k1 and k2, we take into account the 

inequality 

 

𝑓0 >
𝛿1

𝑢1
2

  i.е.  𝐸0 >
𝐿𝑥𝜈

𝜇

𝑐

𝜇𝐻0

1

2√2
(

𝜇−

𝜇+
)

1
4

= 𝐸𝑥𝑎𝑟 .   (21) 

 

Substituting 𝐶1,2
±  into (20), taking into account (21), we obtain: 

 

𝑍 =
𝑇

𝑒𝜑
(𝑢 − 1) [

𝛿−
𝐿

𝜂−
0 −

𝛿+
𝐿

𝜂+
0 + 2 (

𝛿+
0

𝜂+
0 −

𝛿−
0

𝜂−
0 )], 𝑢 = 4 (

𝜇−

𝜇+
)

2

(
𝜈−

𝜈+
)

1
2
, 𝑢 ≫ 1.  (22) 

 

It can be seen from (22) that the impedance of the medium is purely real, i.e. 𝐽𝑚𝑍 =
0. This means that when oscillation (12) appears, there is no capacitive and inductive 

resistance inside, i.e. resistance is ohmic. To find the electric field when the current 

fluctuates in the circuit, we must solve the following equation 

 

𝑍 + 𝑅 = 0 .     (23) 

 

Thus, Equation (23) ν has the form: 

 

𝑍 = ±
𝑇

𝑒𝜑𝑍0
4 (

𝜇−

𝜇+
)

3
2

(
𝛿−

𝐿 −2𝛿−
0

𝜂−
0 −

𝛿+
𝐿 −2𝛿+

0

𝜂+
0 ) + 1 +

𝑅

𝑍0
= 0,  𝑍0 =

𝐿𝑥

𝜎0
.  (24) 

 

From (24) we can easily obtain the following expression for the electric field at the 

appearance of current oscillations with frequency (12) 

 

𝐸0 =
𝐸1

1±
4𝑇

𝑒𝑍0𝑟
 
𝜇−
𝜇+

(
𝛿−
𝜂−

0 −
𝛿+

𝜂+
0 )

 ,    (25) 

 

here 𝑟 = 1 +
𝑅

𝑍0
, 𝛿− = 𝛿−

𝐿 − 2𝛿−
0, 𝛿+ = 𝛿+

𝐿 − 2𝛿+
0. 

For a positive value of E0 with frequency (12) shows the following limiting cases 

 

1) 
𝛿−

𝜂−
=

𝛿+

𝜂+
,  2𝛿−

0 > 𝛿−
𝐿   и  2𝛿+

0 > 𝛿+
𝐿 ,  

𝜂−

𝜂+
=

𝛿−
0

𝛿+
0    or 

𝜂−
0

𝜂+
0 =

𝛿−
𝐿

𝛿+
𝐿 ;  𝐸0 = 𝐸1,  𝜔 = ±(𝜈−𝜈+)

1
2. 

 

2) 
𝜂−

0

𝜂+
0 <

𝛿−
𝐿

𝛿+
𝐿   or 

𝜂−
0

𝜂+
0 <

𝛿−
0

𝛿+
0 ;  𝐸0 < 𝐸1,  𝜔 = +(𝜈−𝜈+)

1
2. 

 

3) 
𝜂−

0

𝜂+
0 >

𝛿−
𝐿

𝛿+
𝐿   or 

𝜂−
0

𝜂+
0 >

𝛿−
0

𝛿+
0 ;  𝐸0 < 𝐸1,  𝜔 = −(𝜈−𝜈+)

1
2. 
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4) 
𝜂−

0

𝜂+
0 <

𝛿−
𝐿

𝛿+
𝐿   or 

𝜂−
0

𝜂+
0 <

𝛿−
0

𝛿+
0 ;  𝐸0 > 𝐸1,  𝜔 = −(𝜈−𝜈+)

1
2. 

 

4. Conclusion 

 

Thus, the value of the external electric field in all listed cases exceeds the 

characteristic field Ecar, but does not exceed the value of E1. Then the radiation of the 

medium occurs when E0 changes from Ecar to E1. 
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